# Hour-scale slow changes in songs might reflect motivation and arousal in songbirds

T. KOUMURA & K. OKANOYA (The Univ. of Tokyo)

Conclusions

Classified notes in the songs with as little human intervention as possible. 

Worked well. Characterized hour-scale change in the note sequence pattern. 

Found periodic patterns.



Complex temporal & spectral structure. Multiple elements (notes) in a sequence.

#### Song Recording





Evaluation of the automatic note classification

3 birds

20523±5992 notes 44.6±6.9 minutes

in a day







## Tipical result



Detected note labels & boundaries

#### Validation score

AAABBC

Viterbi algorithm

Artificial neural network

Spectrogram

Levenshtein distance between correct & output sequences

(LeCun, et al., 1998)

Length of correct sequence

|                   |   | Transition scores |            |  |
|-------------------|---|-------------------|------------|--|
|                   |   | +                 | _          |  |
| lote<br>oisitions | + | 0.21±0.14%        |            |  |
|                   | _ | 0.33±0.15%        | 0.36±0.11% |  |
|                   |   |                   |            |  |

(Ave. ±sd over 3 birds)

AAABBC AAABBC AABBBC AABBC

Error ratio = 1/6

#### Motif-to-motif transition probabilities

Motif: frequently appearing sequence pattern



## Branch points in motif sequences

$$\mathbf{b} \preceq_{\mathbf{d}}^{\mathbf{a}} \frac{P(x_t = \mathbf{a})}{P(x_t = \mathbf{d})}$$

Actual transition

#### Determination of the most suitable window width

to best predict the observed data



Long window

# Transition probabilities

