Hour-scale slow changes in songs might reflect motivation and arousal in songbirds

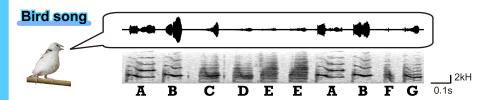
T. KOUMURA & K. OKANOYA (The Univ. of Tokyo)

Conclusions

Classified notes in the songs with as little human intervention as possible.

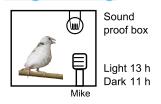
Worked well. Characterized hour-scale change in the note sequence pattern.

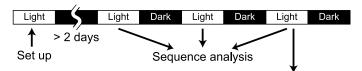
Found periodic patterns.



Complex temporal & spectral structure. Multiple elements (notes) in a sequence.

Song Recording



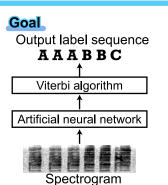


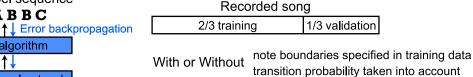
Evaluation of the automatic note classification

3 birds

20523±5992 notes 44.6±6.9 minutes

in a day





Tipical result

Detected note labels & boundaries

Validation score

AAABBC

Viterbi algorithm

Artificial neural network

Spectrogram

Levenshtein distance between correct & output sequences

(LeCun, et al., 1998)

Length of correct sequence

		Transition scores		
		+	_	
lote oisitions	+	0.21±0.14%		
	_	0.33±0.15%	0.36±0.11%	

(Ave. ±sd over 3 birds)

AAABBC AAABBC AABBBC AABBC

Error ratio = 1/6

Motif-to-motif transition probabilities

Motif: frequently appearing sequence pattern



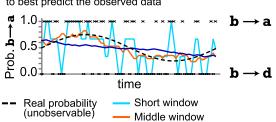
Branch points in motif sequences

$$\mathbf{b} \preceq_{\mathbf{d}}^{\mathbf{a}} \frac{P(x_t = \mathbf{a})}{P(x_t = \mathbf{d})}$$

Actual transition

Determination of the most suitable window width

to best predict the observed data



Long window

Transition probabilities

