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a b s t r a c t

Cerebellar long-term depression (LTD) and cortical spike-timing-dependent synaptic plasticity (STDP) are
two well-known and well-characterized types of synaptic plasticity. Induction of both types of synaptic
plasticity depends on the spike timing, pairing frequency, and pairing numbers of two different sources
of spiking. This implies that the induction of synaptic plasticity may share common frameworks in terms
of signal processing regardless of the different signaling pathways involved in the two types of synaptic
plasticity. Here we propose that both types share common frameworks of signal processing for spike-
timing, pairing-frequency, and pairing-numbers detection. We developed system models of both types
of synaptic plasticity and analyzed signal processing in the induction of synaptic plasticity. We found
that both systems have upstream subsystems for spike-timing detection and downstream subsystems for
pairing-frequency and pairing-numbers detection. The upstream systems used multiplication of signals
from the feedback filters and nonlinear functions for spike-timing detection. The downstream subsystems
used temporal filters with longer time constants for pairing-frequency detection and nonlinear switch-
like functions for pairing-numbers detection, indicating that the downstream subsystems serve as a
leaky integrate-and-fire system. Thus, our findings suggest that a common conceptual framework for the
induction of synaptic plasticity exists despite the differences in molecular species and pathways.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Synaptic plasticity is thought to be a molecular and cellular
basis of our learning andmemory. Cerebellar long-termdepression
(LTD) (Ito, 1989) and cortical spike-timing-dependent synaptic
plasticity (STDP) (Caporale & Dan, 2008; Sjostrom, Rancz, Roth, &
Hausser, 2008; Urakubo, Honda, Tanaka, & Kuroda, 2009) are two
well-known and well-characterized types of synaptic plasticity.
Cerebellar LTD is thought to be a molecular and cellular basis
for cerebellar motor learning (Doya, 2000; Ito, 1989; Kawato,

∗ Corresponding author at: Department of Biophysics and Biochemistry, Grad-
uate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-
0033, Japan. Tel.: +81 3 5841 4697; fax: +81 3 5841 4698.

E-mail address: skuroda@bi.s.u-tokyo.ac.jp (S. Kuroda).
1 These authors contributed equally to this work.
2 Present address: Research and Development Laboratory, Nihon Kohden

Corporation, Nishiochiai 1-31-4, Shinjuku-ku, Tokyo, 161-8560, Japan.
3 Present address: Department of Systems Science, Graduate School of Informat-

ics, Kyoto University, Uji 611-0011, Japan.
4 Present address: Department of Life Sciences, Graduate School of Arts and

Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2013.01.018
1999; Kawato, Kuroda, & Schweighofer, 2011; Lisberger, 1998;
Tsuruno & Hirano, 2011). Cerebellar LTD is a process involving
a long-term decrease in the synaptic strength between parallel
fiber (PF) and Purkinje cells (PC) induced by repetitive pairing
stimulation of PF and climbing fiber (CF) (Ito, 1989; Linden &
Connor, 1995). STDP has been shown to play an important role
in neural development and information processing in the brain
(Caporale & Dan, 2008; Sjostrom et al., 2008; Urakubo et al., 2009),
such as the acquisition of orientation and direction selectivity in
the primary visual system (Engert, Tao, Zhang, & Poo, 2002; Honda,
Urakubo, Tanaka, & Kuroda, 2011; Schuett, Bonhoeffer, & Hubener,
2001; Yao & Dan, 2001). STDP is a process involving a long-term
increase in synaptic strength (i.e., long-term potentiation, LTP)
and a long-term decrease in synaptic strength, LTD, depending
on the timing between pre- and postsynaptic spiking (pre-spiking
and post-spiking, respectively) (Caporale & Dan, 2008; Sjostrom
et al., 2008; Urakubo et al., 2009). Induction of STDP also requires
the repetitive pairing stimulation of pre- and post-spiking. The
signaling pathways that regulate the induction of both types of
synaptic plasticity are different and complex (Bhalla & Iyengar,
1999; Caporale & Dan, 2008; Ito, 1989; Urakubo et al., 2009;
Weng, Bhalla, & Iyengar, 1999); however, they share some similar
signal processing. The signals pairing of two different types
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Fig. 1. Description of biophysical and biochemical reaction kinetics using temporal filters and static nonlinear functions. In the kinetic models, an input signal, I(t), was
transduced through channel kinetics and signaling kinetics to produce an output signal, O(t). If a ligand (black ellipse) binds to a receptor (gray ellipse), this leads to
channel opening, which conducts small ions (white circle). Also, a molecular–molecular interaction (white square and gray ellipse) contributes to signal transduction by
the mechanism of allosteric kinetics. In contrast, in the system models, an input signal, I(t), passed through temporal filters, F(t), with kernel functions, fTF (t), and static
nonlinear functions, gnonlinear [F(t)], and was converted to an output signal O(t).
of spiking are encoded into temporal patterns of Ca2+, which
are further decoded by the downstream signaling pathways to
regulate long-lasting plastic changes in synaptic strength (Caporale
& Dan, 2008; Ito, 1989; Sjostrom et al., 2008; Urakubo et al.,
2009). To understand the mechanisms underlying the induction
of both types of synaptic plasticity, detailed kinetic models of
cerebellar LTD (Brown,Morgan,Watras, & Loew, 2008;Doi, Kuroda,
Michikawa, & Kawato, 2005; Hernjak et al., 2005; Kotaleski, Lester,
& Blackwell, 2002; Kuroda, Schweighofer, & Kawato, 2001) and
cortical STDP (Honda et al., 2011; Karmarkar & Buonomano,
2002; Rubin, Gerkin, Bi, & Chow, 2005; Shouval, Bear, & Cooper,
2002; Urakubo, Honda, Froemke, & Kuroda, 2008) have been
developed. Although these kinetic models are powerful tools for
providing molecular mechanistic insights, it is intuitively difficult
to capture the essential frameworks because of the complex nature
of the signaling pathways. On the other hand, the function of
signaling pathways can be regarded as signal processing (Alon,
2007; Waltermann & Klipp, 2011). Therefore, we characterized
the signaling pathways as signal processing by using temporal
filters and static nonlinear functions that are able to capture
the behaviors of the signaling process in time and amplitude,
respectively.

To explicitly extract the essential frameworks of the complex
signaling pathways, we reduced the detailed kinetic models of
cerebellar LTD and cortical STDP by employing temporal filters and
static nonlinear functions (Hill equation) (Endeman & Kamermans,
2010) and developed system models of the signaling pathways
in the induction of both types of synaptic plasticity. Both models
were able to capture the essential characteristics of the induction
of synaptic plasticity. The system models revealed that both types
of synaptic plasticity share a common framework, with tandem
subsystems for spike-timing detection, and for pairing-frequency
and pairing-numbers detection. The upstream subsystem uses
multiplication of signals from feedback filters and nonlinear
functions for spike-timing detection. The downstream subsystems
use a temporal filter with longer time constants and nonlinear
switch-like functions, which serve as a leaky integrate-and-fire
system of upstream signals, for the pairing-frequency and pairing-
numbers detection, respectively.

2. Results

2.1. A system model by using temporal filters and static nonlinear
functions

The elementary process underlying signal processing in the
induction of synaptic plasticity is the kinetics of ion channels and
biochemical reactions. To illustrate the kinetics more explicitly
in time and amplitude, we constructed computational models
of synaptic plasticity using temporal filters and static nonlinear
functions (Fig. 1, Appendix A). Temporal filters capture time-
varying characteristics in the dynamic relationship between input
and output signals, which explicitly characterize the time scale of a
reaction. A static nonlinear function transforms the instantaneous
amplitude of an input signal to that of an output signal, which
explicitly characterizes the dose–response of a reaction. A Hill
equation, a steady-state solution of a biochemical reaction, was
used for most static nonlinear functions. Here, we tried to give
a reduced description of a linear cascade of signaling pathways
by a set of a temporal filter and static nonlinear function.
This reduction of biophysical and biochemical models makes it
easier to understand signal processing and analysis of the system
dynamics.

In this study, we focused on two well-known types of long-
term synaptic plasticity, cerebellar LTD and cortical STDP, whose
detailed signaling pathways have been previously modeled using
kinetic differential equations (Brown et al., 2008; Doi et al., 2005;
Hernjak et al., 2005; Karmarkar & Buonomano, 2002; Kotaleski
et al., 2002; Kuroda et al., 2001; Rubin et al., 2005; Shouval et al.,
2002; Urakubo et al., 2008). From the kinetic models, we extracted
the signaling pathways minimally necessary for reproduction of
major characteristics of cerebellar LTD and cortical STDP, and
each linear cascade of the pathways was described by a set of a
temporal filter and static nonlinear function. The reduced models
are denoted as system models of cerebellar LTD and cortical
STDP. Signal processing in the induction of both types of synaptic
plasticity has similar traits: spike-timing signals are encoded into
temporal patterns of Ca2+, which are further decoded by the
downstream signaling pathways to regulate long-lasting plastic
changes in synaptic weights. In this study, we developed and
analyzed the system models of cerebellar LTD (see Figs. 2 and 3)
and of cortical STDP (see Figs. 4 and 5) and extracted essential
frameworks of both types of synaptic plasticity (Fig. 6).

Note in the reduction process, the temporal patterns of Ca2+
were normalized as the integrated Ca2+ by a single CF or post-spike
became 1, and the unit of Ca2+ was dimensionless. The concen-
trations of downstream molecules were also normalized by maxi-
mal concentration of active molecules (max = 1). Accordingly, the
dissociation constants (Kds) represent the relative sensitivities of
downstreammolecules to upstreammolecules, and their units are
also dimensionless (Tables 1 and 2). Only time has a unit (msec) in
the present study.
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Fig. 2. The kinetic and systemmodels of cerebellar LTD. Input signals (PF spiking and CF spiking) were converted to the changes of synaptic strength. (A) The kinetic model
of cerebellar LTD. The squares enclose names of intracellular molecules, and the rounded squares enclose names of channels or receptors. The arrows depict the relations
between upstream and downstream, with sharp point meaning activation and a circle meaning suppression. (B) The system model of cerebellar LTD, which consists of
temporal filters and static nonlinear functions. The arrows depict the information flows. Gray and italic words indicate the names of signals (variables). Curves in the square
boxes depict shapes of the filters and functions. τ represents the time constant of each temporal filter. The dashed boxes enclose the IP3R and PKC–MAPK subsystems.
Table 1
Parameters of the cerebellar LTD model.

Name Value Reference

τPF 120 ms (Doi et al., 2005; Okubo et al., 2004)b

τFB 80 ms (Doi et al., 2005)b

k 1.04 (Bezprozvanny et al., 1991)a,b

K 1.04 (Bezprozvanny et al., 1991)a,b

nIP3R 2.7 (Bezprozvanny et al., 1991)b
AmpIP3R 7750 a

τCF 10 ms (Doi et al., 2005)b
Cabasal 0.0416 a

τST 1520 ms (Tanaka et al., 2007)
KdST 8 a

nST 0.34
AmpST 35% (Ito, 1989; Tanaka et al., 2007)a

a Molecular concentrations, dissociation constants, and amplification factors are
dimensionless.

b The parameters were estimated accordingly to reproduce the behavior in the
detailed model (Doi et al., 2005). Note that parameters in the reduced model do
not directly correspond to those in experiments nor to biophysical parameters in
the detailed model because parameters in the reduced model can be regarded as
compressed parameters of several reactions.

2.2. System model of cerebellar LTD

To extract the essential framework of the signaling pathway in
the induction of cerebellar LTD, we reduced the detailed kinetic
model of cerebellar LTD (Fig. 2(A), Appendix B) (Doi et al., 2005;
Kuroda et al., 2001) and developed a system model of cerebellar
LTD by using temporal filters and static nonlinear functions (Hill
equations). This model has eight variables, which describe the
representative signaling activities (Fig. 2(B), gray and italic words).
Repetitive pairing of a PF-spike burst followed by a CF spike,
but neither the opposite spike timing nor PF or CF spiking alone,
induced large Ca2+ (Ca) (Doi et al., 2005; Wang, Denk, & Hausser,
2000) and consequently reduced synaptic strength (i.e., LTD;
Fig. 3(A)–(C)) (Safo & Regehr, 2008).
Table 2
Parameters of the cortical STDP model.

Name Value Reference

AmpNMDAR 1.36 a

τNMDAR 12 ms (Feldmeyer et al., 2002)b

τBAP 4 ms (Sabatini et al., 2002)b
τFB 10 ms (Urakubo et al., 2008)c
κ 0.0114 (Urakubo et al., 2008)c
nFB 1 (Urakubo et al., 2008)c
KdV 0.175 (Mayer et al., 1984)a,c
α 0.15 (Mayer et al., 1984)c
nV 6 (Mayer et al., 1984)c
τCaN 3000 ms (Quintana et al., 2005)
τPKA 2000 ms (Urakubo et al., 2008)c
τCaMKII 8000 ms (Urakubo et al., 2008)c
τPP1 8000 ms
KdCaN 0.02 (Urakubo et al., 2008)a,c
nCaN 10 (Urakubo et al., 2008)c
KdPKA 0.08 (Urakubo et al., 2008)a,c
nPKA 5 (Urakubo et al., 2008)c
KdCaMKII 0.21 (Urakubo et al., 2008)a,c
nCaMKII 30 (Urakubo et al., 2008; Zhabotinsky, 2000)c
KdPP1 0.7 (Urakubo et al., 2008)a,c
nPP1 2 (Urakubo et al., 2008)c
AmpLTP 70% (Urakubo et al., 2008)a,c
AmpLTD 70% (Urakubo et al., 2008)a,c

a Molecular concentrations, dissociation constants, and amplification factors are
dimensionless.

b τNMDAR and τBAP are the time constants of alpha functions that includes both
activation and inactivation time constants of NMDARs and BAP, respectively (see
(A.4), (C.1) and (C.4) in Appendix).

c The parameters were estimated according to reproduce the behavior in the
detailed model (Urakubo et al., 2008). Note that parameters in the reduced model
do not directly correspond to those in experiments nor to biophysical parameters
in the detailed model because parameters in the reduced model can be regarded as
compressed parameters of several reactions.

According to the system model, the essential framework of
signal processing in the induction of cerebellar LTD is comprised
of one upstream and one downstream subsystem (Fig. 2(B)). The
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Fig. 3. Signal processing in the induction of cerebellar LTD. (A) The sample time profiles of Ca and IP3 signals in the IP3R subsystem. Red lines show the burst PF spiking
preceded the CF spiking by 100ms (TCF–TPF = +100ms), blue lines show the burst PF spiking followed the CF spiking by 100ms (TCF–TPF = −100ms), and black lines show
PF spiking alone. θ represents the transition threshold of CaIP3R signals (see Supplemental Fig. 1(B)). (B, C) Time window of the averaged Ca (time integration of Ca signals)
(B) and synaptic strength (C) induced by pairing frequency with 1 Hz for 60 s in the system model. (D) The responses of the PKC–MAPK subsystem to repetitive pairing of
PF and CF spiking (TPF–TCF = +100 ms) at 1 Hz for 60 s (solid line) and at 0.25 Hz for 60 s (dashed line). The peak amplitude of signals from the PKC–MAPK temporal filter
was transformed through switch-like nonlinear functions to synaptic strength. (E) The pairing-frequency-dependent changes of synaptic strength (TPF–TCF = +100 ms).
(F) The pairing-numbers-dependent changes of synaptic strength (TPF–TCF = +100 ms at 1 Hz).
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Fig. 4. The kinetic and systemmodels of cortical STDP. Input signals (pre-spiking and post-spiking)were converted to the changes of synaptic strength. (A) The kineticmodel
of cortical STDP. The squares enclose names of intracellular molecules, and the rounded squares enclose names of channels or receptors. The arrows depict the relations
between upstream and downstream. The sharp arrowhead activation, and the circles indicate suppression. (B) The systemmodel of cortical STDP, which consists of temporal
filters and static nonlinear functions. The arrows depict the information flows. Gray and italic words indicate names of signals (variables). Curves in the square boxes depict
shapes of the filters and functions. τ represents the time constant of each filter. The dashed boxes enclose the feedback subsystems and downstream subsystems.
upstream subsystem is denoted as the inositol 1,4,5-trisphosphate
receptor (IP3R) subsystem. In this subsystem, PF spiking led to the
generation of IP3 (IP3) and IP3-mediated Ca2+ signal (CaIP3R), andCF
spiking led to a VGCC-mediated Ca2+ signal (CaVGCC ). Only when PF
spiking was followed by CF spiking in the timewindow from−200
to 300 ms (Fig. 3(B)), the pairing of PF and CF spiking ‘induced’
the regenerative cycle of Ca2+, which was described by a feedback
filter and a bell-shaped nonlinear function in the system model.
The output signal from the IP3R subsystem (Ca) was transformed
by the temporal filter (FB) and bell-shaped nonlinear function
(GIP3R), and the filtered signal (GIP3R) was used for multiplication
by the signal from PF spiking, IP3 (Figs. 2(B) and 3(A)). Because
the nonlinear function for GIP3R has a bell shape (Bezprozvanny,
Watras, & Ehrlich, 1991), the IP3R subsystem acts as positive
feedback at a lower signal level and negative feedback at a higher
signal level. Thus, the signal from the IP3R subsystem is transient.
The timewindowof the regenerative cycle of Ca2+ was determined
by the temporal filter of PF spiking (Fig. 3(B), Supplemental Fig. 1)
and consequently LTD (Fig. 3(C)). Thus, themultiplication of signals
from the IP3R feedback subsystem and the temporal filter of PF
spiking is the mechanism underlying the detection of the timing
between PF and CF spiking.
Ca2+ was then transferred to the downstream protein kinase C
(PKC)—mitogen activated-protein kinase (MAPK) subsystem with
temporal filters (PKC–MAPK temporal filter) and static nonlinear
functions (Synaptic strength). We used the PKC–MAPK subsystem,
which has been determined as the leaky integrate-and-fire
mechanism proposed by Tanaka et al. (2007). The time constant
of the temporal filter of the PKC–MAPK subsystem (1520 ms)
was much larger than those of the upstream subsystem (80 ms)
and the temporal filter of PF spiking (120 ms). Therefore, the
integration of signals in the PKC–MAPK subsystem requires the
pairing interval of PF and CF spiking to be shorter than 1520 ms
(Fig. 3(D), PKC–MAPK temporal filter), and a pairing frequency
of less than 1 Hz did not induce LTD. (Fig. 3(E)). Spontaneous
and maximal CF-spiking rates have been shown to be about
1 Hz and a few hertz (Welsh, 2002), respectively, suggesting that
the CF spiking is likely to limit the pairing-frequency in vivo.
Considering this fact, the PKC–MAPK subsystem can integrate
signals of PF and CF spiking in vivo. Thus, the time constant of
the temporal filter in the PKC–MAPK subsystem determines the
pairing frequency necessary for LTD induction. The integrated
signal was transformed in a switch-like manner by the static
nonlinear function, which corresponds to a PKC–MAPK positive
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Fig. 5. Signal processing in the induction of cortical STDP. (A) The sample time profiles of Ca and GNMDAR signals in the NMDAR subsystem. Red lines indicate positive
timing with 20 ms interval (Tpost–Tpre = +20 ms), blue lines indicate the negative timing with 20 ms interval (Tpost–Tpre = −20 ms), and black lines indicate pre-spiking
alone. (B–D) The time window of the peak Ca amplitude in the system model (B), synaptic strength induced by the pairing frequency with 1 Hz for 60 s (C), and the
normalized peak amplitudes of CaN signals (black line), PKA signals (green line), PP1 signals (blue line), and CaMKII signals (red line) (D) in the systemmodel of cortical STDP.
(E) The responses of PP1 and CaMKII signals to repetitive pairing of pre- and post-spiking at 1 Hz for 60 s. Red lines indicate the positive timing with 10 ms interval, blue
lines indicate the negative timing with 10 ms interval, and black lines indicate pre-spiking alone. The peak amplitude of PP1 and CaMKII signals were transformed through
switch-like nonlinear functions and summed into synaptic strength, leading to LTD and LTP, respectively. (F) The pairing-frequency-dependent changes of synaptic strength
in the positive timing with 10 ms interval (solid line) and in the negative timing with 10 ms interval (dashed line). (G) The pairing-numbers-dependent changes of synaptic
strength in the positive timing with 10 ms interval (solid line) and in the negative timing with 10 ms interval (dashed line), both of which were given at 1 Hz.
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Fig. 6. Common framework of signal processing in synaptic plasticity. The signal processing of both cerebellar LTD and cortical STDP consist conceptually of upstream
and downstream subsystems. The upstream subsystem uses multiplication of signals from the feedback filters with shorter time constant (∼10–100 ms) and nonlinear
functions, and it detects spike-timing information (1). The downstream subsystem consists of the temporal filter with a longer time constant (∼1–10 s) and a switch-like
static nonlinear function, which serves as a leaky integrate-and-fire system. The temporal filter with a longer time constant determines pairing frequency (2), and the switch-
like static nonlinear function determines pairing numbers (3) when pairing frequency is much faster than the time constant of the temporal filter necessary to induce change
of synaptic strength.
feedback loop (Bhalla & Iyengar, 1999; Kuroda et al., 2001; Tanaka
& Augustine, 2008; Tsuruno & Hirano, 2007). When the pairing
interval of PF and CF spiking was faster than the time constant
of the temporal filter, the repetitive signals were integrated, and
when the integrated signal exceeded the threshold of the static
nonlinear function, synaptic strength changed (Fig. 3(D) and (F),
Synaptic strength). This means that the threshold of the static
nonlinear function can determine the pairing numbers necessary
for LTD induction (Fig. 3(F)), because a lower threshold requires
fewer pairing numbers and a higher threshold requiresmore. Thus,
the downstream PKC–MAPK subsystem determines the pairing
frequency and pairing numbers required for cerebellar LTD.

In summary, the upstream IP3R subsystem detects the timing
between PF and CF spiking by using feedback multiplication,
and the downstream PKC–MAPK subsystem detects the pairing
frequency and pairing numbers of PF and CF spiking required
for the induction of LTD by using the leaky integrate-and-fire
system. This is the essential framework of signal processing in the
induction of cerebellar LTD.

2.3. System model of cortical STDP

By using temporal filters and static nonlinear functions, we also
developed a system model of cortical STDP, which consists of 16
variables to describe the representative signaling activities (Fig. 4,
gray and italic words; Appendix C). Repetitive pairing of a pre-
spike followed by a post-spike, denoted as positive timing, induced
larger Ca2+ (Ca), and consequently increased synaptic strength
(i.e., LTP), whereas repetitive pairing of a post-spike followed by
a pre-spike, denoted as negative timing, induced smaller Ca and
decreased synaptic strength (i.e., LTD; Fig. 5(A)–(C)) (Froemke, Poo,
& Dan, 2005; Koester & Sakmann, 1998; Lisman, 2001; Urakubo
et al., 2008).

The system model of cortical STDP revealed the essential
framework of signal processing in the induction of cortical STDP,
with one upstream and two downstream subsystems (Fig. 4(B)).
Timing between pre- and post-spiking was detected by two
types of multiplication of pre-spiking by a backpropagating
action potential (BAP) from post-spiking (BAP) and by a feedback
signal from the output Ca signal (GNMDAR) in the N-methyl D-
aspartate receptor (NMDAR) subsystem (Fig. 4(B)). In pairing, pre-
spiking activated NMDARs (NMDAR) and post-spiking initiated a
BAP (BAP), respectively. In the positive timing, multiplication of
NMDAR and Gv induced larger CaNMDAR (Fig. 5(A), red line), where
Gv corresponds to release of Mg2+-block of NMDARs by a BAP
(BAP) in the kinetic model. This multiplication of NMDAR and
Gv is a feedforward multiplication. The time window of LTP was
determined by the temporal filter of pre-spiking (Supplemental
Fig. 2(B)). In contrast, in the negative-timing, the signal induced
by post-spiking was transferred to a feedback filter (FB) and a
nonlinear function (GNMDAR) in the NMDAR subsystem. Because
the output signal from this nonlinear function decreased as the
input signal to this function increased, the output signal from
this subsystem (GNMDAR) became smaller as the signal from post-
spiking became larger. Thus, this subsystem acts as a negative
feedback. GNMDAR was then multiplied by the signal of pre-spiking,
resulting in reduction of NMDAR and consequently of CaNMDAR
in the negative-timing (Fig. 5(A), blue line), which corresponds
to the allosteric inhibition of NMDARs in the kinetic model
(Urakubo et al., 2008). The time window of LTD was determined
by the temporal filter of the negative feedback (Supplemental
Fig. 2(A)). Thus, the positive-timing was detected by feedforward
multiplication of NMDAR and Gv, and the negative-timing was
detected by feedback multiplication of a post-spiking signal
through the feedback filter and the nonlinear decreasing function
(GNMDAR) and pre-spiking.

Ca2+ was then transferred to two downstream subsystems:
the protein phosphatase 1 (PP1) and Ca2+/calmodulin dependent
protein kinase II (CaMKII) subsystems. The PP1 and CaMKII
subsystems serve as selective decoders of lower and higher Ca2+
signals (Ca), respectively, through different Ca2+ sensitivity of the
static nonlinear functions (Fig. 5(D), Supplemental Fig. 3). The
signal of lower Ca selectively induced a PP1 signal (PP1) through
the balance of signals between calcineurin (CaN) and protein
kinase A (PKA) through high and middle Ca2+ sensitivity of the
static nonlinear functions, respectively, which negatively regulate
synaptic strength (Fig. 5(E), Supplemental Fig. 4). This means that
the PP1 subsystem is a decoder of the negative-timing information
into LTD. The signal of higher Ca2+ selectively induced a CaMKII
signal (CaMKII) through low Ca2+ sensitivity of the static nonlinear
function (Fig. 5(D), Supplemental Fig. 3), which positively regulates
synaptic strength. This means that the CaMKII subsystem is a
decoder of the positive-timing information into LTP. The time
constants of both subsystems (8 s) were larger than those of the
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NMDAR subsystem, and therefore integration of the signals at the
PP1 and CaMKII subsystems requires the pairing interval of pre-
and post-spiking to be shorter than 8 s (Fig. 5(E)). Consistent with
this, a pairing frequency of pre- andpost-spiking of 0.2Hz (1/5 s−1)
has been shown to induce STDP in some pyramidal neurons
(Froemke & Dan, 2002). Because of the large time constants of
the PP1 and CaMKII subsystems, the subsystems can integrate the
signal with such a low pairing frequency. Thus, the time constants
of the PP1 and CaMKII subsystem determine the pairing-frequency
required for the induction of cortical STDP. The integrated signals
of CaMKII and PP1 were transformed in a switch-like manner by
the static nonlinear functions, corresponding to a CaMKII positive
feedback loop (Dupont, Houart, & De Koninck, 2003; Okamoto
& Ichikawa, 2000; Urakubo et al., 2008; Zhabotinsky, 2000) and
cooperative CaN activation (Feng & Stemmer, 2001; Stemmer
& Klee, 1994), respectively. When the pairing intervals in the
positive and negative timing were faster than the time constant
of the CaMKII and PP1 subsystems, the signals were integrated
and reached the threshold, leading to LTP and LTD, respectively
(Fig. 5(F), Synaptic strength). This means that the thresholds of
the static nonlinear functions of the CaMKII and PP1 subsystems
can determine the pairing-numbers necessary for LTP and LTD
induction (Fig. 5(G)), because the lower thresholds of the static
nonlinearity of PP1 and CaMKII require fewer pairing numbers
for LTD and LTP, respectively, and their higher thresholds require
more. This is consistentwith the experimental observation that the
pairing-numbers required for both LTD and LTP were around 60
times in cortical STDP (Froemke, Tsay, Raad, Long, & Dan, 2006).
Thus, the downstream subsystems can determine the pairing-
frequency and pairing-numbers required for cortical STDP.

In summary, theNMDAR subsystemdetects the timing between
pre- and post-spiking by use of feedforward and feedback
multiplications, and the CaMKII and PP1 subsystems detect lower
and higher Ca2+ signals, respectively, and determine the pairing-
frequency and pairing-numbers required for induction of LTP
and LTD, respectively by use of parallel leaky integrate-and-fire
systems. This is the essential framework of signal processing in the
induction of cortical STDP.

3. Discussion

A common framework achieves the induction of both cerebellar
LTD and cortical STDP (Fig. 6). Both systems have upstream
subsystems for spike-timing detection, namely the IP3R subsystem
in cerebellar LTD and the NMDAR subsystem in cortical STDP.
Both subsystems use feedback multiplication of signals from the
feedback filters and nonlinear functions as well as from inputs for
the spike-timing detection for LTD. The NMDAR subsystem uses
feedforward multiplication of pre- and post-spiking signals for
spike-timing detection for LTP. Both subsystems mainly use ion
dynamics, and the scale of the time constants of both upstream
subsystems are in the range of about 10–100 ms, which were
obtained by those in the biophysical and biochemical models (Doi
et al., 2005; Naoki, Sakumura, & Ishii, 2005; Urakubo et al., 2008)
and in experiments (Bezprozvanny et al., 1991; Lester, Clements,
Westbrook, & Jahr, 1990; Nevian & Sakmann, 2004; Sabatini,
Oertner, & Svoboda, 2002;Wang et al., 2000). The two frameworks
of signal processing have common characteristics of spike-timing
detection in both subsystems.

In addition, both systems have downstream subsystems for
pairing-frequency and pairing-numbers detection, namely the
PKC–MAPK subsystem in cerebellar LTD and the CaMKII and
PP1 subsystems in cortical STDP. Both subsystems mainly use
phosphorylation dynamics and a temporal filter with longer
time constants (∼1–10 s) followed by nonlinear switch-like
functions, which serve as leaky integrate-and-fire systems of
upstream signals. The time constants of the temporal filters
in the downstream subsystem determine the pairing frequency
necessary for the induction of synaptic plasticity. The time
constants of the downstream subsystems were obtained from
the biophysical and biochemical models (Bhalla & Iyengar, 1999;
Kuroda et al., 2001; Ogasawara, Doi, Doya, & Kawato, 2007;
Urakubo et al., 2008) and in experiments (De Koninck & Schulman,
1998; Tanaka et al., 2007). The switch-like responses of the static
nonlinearity functions determine the pairing numbers necessary
for the induction of synaptic plasticity. The higher the threshold
becomes, the more pairing numbers are required. The two
frameworks of signal processing have common characteristics
of pairing-frequency and pairing-numbers detection in both
subsystems. Here we focused on the early phase of long-term
synaptic plasticity. The late-phase of synaptic plasticity has been
shown to involve gene and protein expression, which presumably
has longer time scales on the order of minutes and hours.

In the system models, we reduced the detailed kinetic models
of cerebellar LTD and cortical STDP to capture the essential charac-
teristics, rather than to make the most effectively reduced model.
For effective model reduction, many mathematical methods have
been proposed (e.g. Okino & Mavrovouniotis, 1998). Based on the
methods, a targetmodel will be simplest, butmay be unintuitive in
some cases. The systemmodeling approach is beneficial to explain
synaptic plasticity on the basis of signaling pathways sufficiently
simply and more intuitively.

In conclusion, our systemmodels highlight the common frame-
works underlying the induction of both types of synaptic plasticity,
regardless of the fact that different molecules and networks are in-
volved in the induction of cerebellar LTD and cortical STDP.
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Appendix A. Temporal filter and static nonlinear functions of
the systems models

We reduced the detailed kinetic models of cerebellar LTD and
cortical STDP (Fig. 1) by employing two types of linear temporal
filters and static nonlinear functions (Endeman & Kamermans,
2010). The two types of the linear temporal filters are defined by

Output(t) =

 t

−∞

dt ′ · Input(t ′) · fTF1(t − t ′; τ), (A.1)

fTF1(t; τX ) =


1
τX

exp


−
t
τX


, (0 ≤ t)

0, otherwise,
(A.2)

Output(t) =

 t

−∞

dt ′ · Input(t ′) · fTF2(t − t ′; τ), (A.3)

fTF2(t; τX ) =


t
τ 2
X
exp


−

t
τX


, (0 ≤ t)

0, otherwise,
(A.4)

where t is the time, X is the index of the filter, τx is the time
constant, and fTF1(t; τ) and fTF2(t; τ) is the kernel functions.
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The static nonlinear function is described by the following Hill
equation:

Output(t) = gHill [Input(t); KdX , nX ] , (A.5)

gHill(Input; KdX , nX ) =
InputnX

KdnXX + InputnX
, (A.6)

where Input(t) is the input, Kdx is the dissociation constant, nx is
the Hill coefficient, and gHill[Input(t); KdX , nx] is the Hill equation.
This Hill equation is used, except that the bell-shaped function is
also used as a nonlinear filter in Eq. (B.3).

Appendix B. Cerebellar LTD model

Using the linear temporal filters and static nonlinear functions,
we developed a system model of cerebellar LTD (Fig. 2, Table 1).
The model had one upstream and one downstream subsystem,
denoted as the IP3R and the PKC–MAPK subsystems, respectively.
The construction of these subsystems is described in the following
sections.

IP3R subsystem
PF-spiking leads to the generation of IP3. The dynamics of

IP3, IP3(t), is described as follows:

IP3(t) =

 t

−∞

dt ′ ·


i

δ(t iPF − t ′) · fTF2(t − t ′; τPF ), (B.1)

where δ(t) is the Dirac’s delta function, which converts PF-spiking
events to unit impulses in time; t iPF is the time of the ith PF-spiking
event; and τPF is the time constant of IP3 generation. IP3-induced
Ca2+ release, CaIP3R, is described by

CaIP3R(t) = GIP3R(t) · IP3(t), (B.2)

where GIP3R is the Ca2+-dependent component of IP3R. GIP3R is
described by

GIP3R(t) = AmpIP3R ·


k · FB(t)

[k + FB(t)] · [K + FB(t)]

nIP3R
, (B.3)

FB(t) =

 t

−∞

dt ′ · Ca(t ′) · fTF1(t − t ′; τFB), (B.4)

where AmpIP3R, k, K , and nIP3R are the gain, lower, and higher
sensitivity constants and the order of the IP3R bell-shape function,
respectively; Ca(t) is the total Ca2+ increase as described below;
and τFB is the time constant of Ca2+ feedback.

In turn, CF spiking leads to aVGCC-mediated Ca2+ signal, CaVGCC ,
as follows:

CaVGCC (t) =

 t

−∞

dt ′ ·


i

δ(t iCF − t ′) · fTF2(t − t ′; τCF ), (B.5)

where δ(t) is the Dirac’s delta function, t iCF is the time of the ith
CF-spiking event, and τCF is the time constant of the Ca2+ signal.
Together with CaIP3R, the total Ca2+ signal, Ca, is

Ca(t) = Cabasal + CaVGCC (t) + CaIP3R(t), (B.6)

where Cabasal is the basal Ca2+ signal. The basal Ca2+ signal was
required for the regenerative cycle of Ca2+ triggered just by a PF-
spike burst followed by a CF spike. In the IP3R subsystem, Ca(t) is
normalized as integrated CaVGCC (t) by a single CF spike becomes 1.

PKC–MAPK subsystem
In the PKC–MAPK subsystem, Ca filtered through the temporal

filter, PKC–MAPK temporal filter (t), and through static nonlinearity,
LTD, and the final readout, Synaptic strength, are defined by

PKC–MAPK temporal filter(t)

=

 t

−∞

dt ′ · Ca(t ′) · fTF1(t − t ′; τST ), (B.7)

LTD = AmpST · max
t

{gHill[PKC–MAPK temporal filter(t);

KdST , nST ]}, (B.8)

Synaptic strength = 100 − LTD, (B.9)

where τST is the time constant of the low-pass filter in the
PKC–MAPK subsystem, and AmpST , KdST , and nST are the gain and
dissociation constants and the Hill coefficient of the nonlinear
function in the PKC–MAPK subsystem, respectively.

Appendix C. Cortical STDP model

Using the linear temporal filters and static nonlinear functions,
we developed a system model of cortical STDP (Fig. 4, Table 2),
which consisted of one upstream subsystem (NMDAR) and two
downstream subsystems (PP1 and CaMKII). The construction of
these subsystems is described in the following sections.

NMDAR subsystem
Pre-spiking leads to the activation of NMDARs, NMDAR, as

follows:

NMDAR(t) =

 t

−∞

dt ′ ·


i

GNMDAR(t ipre) · δ(t ipre − t ′)

· fTF2(t − t ′; τNMDAR), (C.1)

where δ(t) is the Dirac’s delta function, t ipre is the time of ith pre-
spiking event, τNMDAR is the time constant ofNMDARactivation, and
Gpre is the negative regulatory component from a feedback filter.
Gpre is defined as:

GNMDAR(t) =
AmpNMDAR

κnFB + FB(t)nFB
, (C.2)

FB(t) =

 t

−∞

dt ′ · Ca(t ′) · fTF1(t − t ′; τFB), (C.3)

where κ and nFB are the dissociation constant and Hill coefficient
of the static nonlinear function, respectively; τFB is the time
constant of the temporal filter of the allosteric feedback inhibition
of NMDARs; and Ca(t) is the total Ca2+ signal.

In turn, post-spiking leads to a BAP, BAP(t). BAP negatively
regulates a Ca2+ signal via NMDARs, CaNMDAR(t), and leads to a Ca2+
signal via VGCC,CaVGCC (t). BAP(t),GV (t), CaNMDAR(t), andCaVGCC (t)
are defined as:

BAP(t) =

 t

−∞

dt ′ ·


i

δ(t ipost − t ′) · fTF2(t − t ′; τBAP), (C.4)

GV (t) =
[BAP(t) + α]nV

KdnVV + [BAP(t) + α]nV
(C.5)

CaNMDAR(t) = GV · NMDAR(t), (C.6)
CaVGCC (t) = BAP(t), (C.7)

where t ipost is the time of ith post-spiking event, and τBAP , nV , KdV ,
and α are the time constant, Hill coefficient, dissociation constant,
and resting potential of BAP, respectively. Together, the total Ca2+
signal, Ca(t), is

Ca(t) = CaVGCC (t) + CaNMDAR(t). (C.8)

In the NMDAR subsystem, Ca(t) is normalized as integrated
CaVGCC (t) by a single post-spike becomes 1.



M. Honda et al. / Neural Networks 43 (2013) 114–124 123
PP1 subsystem
In the PP1 subsystem, based on Ca, the activation of CaN (CaN),

PKA (PKA), and PP1 (PP1) are calculated by

CaN temporal filter(t) =

 t

−∞

dt ′ · Ca(t ′) · fTF1(t − t ′; τCaN), (C.9)

CaN(t) = gHill [CaN temporal filter(t), KdCaN , nCaN ] , (C.10)

PKA temporal filter(t) =

 t

−∞

dt ′ · Ca(t ′)

· fTF1(t − t ′; τPKA), (C.11)

PKA(t) = gHill [PKA temporal filter(t), KdPKA, nPKA] , (C.12)

PP1 temporal filter(t) =

 t

−∞

·[CaN(t ′) − PKA(t ′)]

· fTF1(t − t ′; τPP1)dt ′, (C.13)

PP1(t) = gHill [PP1 temporal filter(t), KdPP1, nPP1] , (C.14)

where {τCaN , KdCaN , nCaN}, {τPKA, KdPKA, nPKA}, and {τPP1, KdPP1,
nPP1} are the {time constant, dissociation constant, Hill coefficient}
of CaN, PKA, and PP1, respectively.

CaMKII subsystem
In the CaMKII subsystem, the activation of CaMKII (CaMKII) is

calculated by

CaMKII temporal filter(t) =

 t

−∞

dt ′ · Ca(t ′)

· fTF1(t − t ′; τCaMKII), (C.15)

CaMKII(t) = gHill[CaMKII temporal filter(t),
KdCaMKII , nCaMKII ], (C.16)

where τCaMKII , KdCaMKII , and nCaMKII are the time constant, dissoci-
ation constant, and Hill coefficient of CaMKII, respectively. Based
on PP1(t) and CaMKII(t), the final readout, Synaptic strength, is de-
fined by

LTP = AmpLTP · max
t

[CaMKII(t)] , (C.17)

LTD = AmpLTD · max
t

[PP1(t)] , (C.18)

Synaptic strength = 100 + LTP–LTD. (C.19)

Appendix D. Numerical simulation

The software Matlab (Mathworks Inc., Natick, MA, USA) was
used for simulation and analyses. Sample programs are available
for download at http://www.kurodalab.org/info/SystemModel/
index.html. For efficient computation, the algorithm of the ARMA
filter was used. For the computation of the cerebellar LTDmodel, a
1 ms time step was used. For the computation of the cortical STDP
model, a 0.1 ms time step was used.

Appendix E. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.neunet.2013.01.018.
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